

Tutorial Twelve

snappyHexMesh – Single Region

5th edition, Sep. 2019

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM® Basic Training

Tutorial Twelve

Editorial board:

• Bahram Haddadi
• Christian Jordan
• Michael Harasek

Compatibility:

• OpenFOAM® 7
• OpenFOAM® v1906

Cover picture from:

• Philipp Schretter

Contributors:
• Philipp Schretter
• Bahram Haddadi
• Yitong Chen

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:
- Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial — You may not use this work for commercial purposes.
- Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

- Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

- Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

- Other Rights — In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
- Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

ISBN 978-3-903337-00-8

Publisher: chemical-engineering.at

For more tutorials visit: www.cfd.at

OpenFOAM® Basic Training

Tutorial Twelve

Background

In this tutorial, we will familiarize ourselves with the snappyHexMesh tool in OpenFOAM®. This
utility generates 3D meshes containing hexahedra and split-hexahedra. We will also introduce
different types of meshes with complex geometries and compare the snappyHexMesh tool with
other mesh generation tools.

1. Meshes with complex geometries

So far we have only worked with meshes in Cartesian co-ordinates, however, many engineering
problems involve complex geometries that do not fit exactly in Cartesian co-ordinates. In such
cases, it would be much more advantageous to work with grids that can handle curvature and
geometric complexity more naturally.

CFD methods for complex geometries are classified into two groups:

1) structured curvilinear grid arrangements

2) unstructured grid arrangements

In a structured grid arrangements:

• Cells center points are placed at the intersections of co-ordinates lines

• Cells have a fixed number of neighboring cells

• Cells center points can be mapped into a matrix based on their location in the grid

• Structure and position in the matrix is given by indices (I, J in two dimensions and I, J, K in
three dimensions)

For the most complex geometries it may be necessary to sub-divide the flow domain into several
different blocks, where each mesh cell is a block, this is known as block-structured grids. The
next level of complexity is the unstructured grids. It gives unlimited geometric flexibility, here the
limitations of structured grids do not apply – but at the cost of higher programming and
computational efforts. Unstructured grids also allow the most efficient use of computing resources
for complex flows, so this technique is now widely used in industrial CFD.

2. Mesh generation tools

There are a number of advanced meshing tools available, both commercial and free source. The
major mesh generators are ANSYS GAMBIT®, ICEM, Salome, snappyHexMesh and cfMesh. Here
we will learn about GAMBIT®, snappyHexMesh and cfMesh tools in detail.

2.1. GAMBIT®

GAMBIT® is a 3D unstructured tool, to specify the meshing scheme in it, two parameters must be
specified:

• Elements
• Type

OpenFOAM® Basic Training

Tutorial Twelve

The Elements parameter defines the shape(s) of the elements that are used to mesh the object. The
Type parameter defines the pattern of mesh elements on the object. It has a single graphical user
interface which brings geometry creation and meshing together in one environment.

2.2. snappyHexMesh

In contrast to GAMBIT®, which incorporates both mesh generation and refinement, the
snappyHexMesh tool built within OpenFOAM® requires an existing geometry base mesh to work
with. The base mesh usually comes from the blockMesh tool. This utility has the following key
features:

• allow parallel execution to speed up the process
• supports geometry data from STL/OBJ files
• addition of internal and wall layers
• zonal meshing

The key steps involved when running snappyHexMesh are:

• Castellation: The cells which are beyond a region set by a predefined point are deleted
• Snapping: Reconstructs the cells to move the edges from inside the region to the required

boundary
• Layering: Creates additional layers in the boundary region.

The advantages of snappyHexMesh over the other mesh generation tools are as follows:

• No commercial software package is ultimately necessary. For the meshing, the OpenFOAM®
environment is sufficient and no further software is necessary.

• The geometry can be created with any CAD program like CATIA®, FreeCAD, etc. As the
geometry is to be only surface data, the files need to be in .stl, .nas or .obj. format.

• The meshing process can be run in parallel mode. If high computational capabilities are
available, high quality meshes can be generated in little time.

2.3. cfMesh

cfMesh is an open-source library for mesh generation implemented within the OpenFOAM®
framework (similar to snappyHexMesh). Currently cfMesh is capable of producing mesh of
Cartesian type in both 2D and 3D, tetrahedral and polyhedral types.

The fundamental work-flow of the tool starts from a mesh template, then followed by a mesh
modifier. The modifier allows for efficient parallelization using shared memory parallelization
(SMP) and distributed memory parallelization using MPI.

OpenFOAM® Basic Training

Tutorial Twelve

snappyHexMesh – flange

Simulation

The procedure described in this tutorial is structured in the following order:
• Creation of the geometry data
• Meshing a geometry with one single region
• Run an OpenFOAM® simulation with the generated mesh using scalarTransportFoam

Objectives

• The aim of the tutorial is to give a basic introduction to single region meshing with the meshing
tool snappyHexMesh

• Understanding the advantages of snappyHexMesh

• Understanding the three basic steps of snappyHexMesh

Data processing

Import your simulation to ParaView and analyze the heat distribution in the flange.

OpenFOAM® Basic Training

Tutorial Twelve

1. Pre-processing
1.1. Copy tutorial
Copy the following tutorial to your working directory.

$FOAM_TUTORIALS/mesh/snappyHexMesh/flange

1.2. Set-up of stl files

Normally the .stl files are created using CAD software, such as CATIA® and freeCAD. stl files
contain information about the solid geometry. However, in this tutorial the stl files are available to
be copied from the OpenFOAM® tutorials folder. To do this, copy the stl files from the below
location to the constant/triSurface of your running case directory.
$FOAM_TUTORIALS/resources/geometry/flange.stl.gz

1.3. constant directory

The constant directory must initially have the following folder:

- triSurface:

The folder triSurface should contain a file with the geometry data to be meshed (stl, nas, obj).
The file name is to be used as a reference pointer in later stages.

Note: The stl file should be in ascii format. All the stl files (different boundaries stl files) should
form a closed geometry together.

1.4. system directory

For creating a mesh using snappyHexMesh the following files should be present in system
directory:
- blockMeshDict

For meshing using snappyHexMesh a background mesh is needed, which should surround the
geometry surface (e.g. stl file) file. The background mesh will be refined based on the settings in
the snappyHexMeshDict and the extra parts will be removed. Usually the background mesh is
crated using blockMesh. Here we define a base mesh.
Note: To ensure that the sharp edges are refined properly, it is very important to create perfect
cube cells in the background mesh using blockMesh utility.

- decomposeParDict

The meshing using snappyHexMesh can be also performed in parallel mode. If the mesh is to be
run in parallel using the decomposePar utility, this file defines the parameters for distributed
processors

- meshQualityDict

Parameters to be checked for mesh quality and their values are defined in this file.

OpenFOAM® Basic Training

Tutorial Twelve

- surfaceFeatureExtractDict:

Using surfaceFeatures utility prior to meshing with snappyHexMesh helps to extract the sharp
edges and have a better mesh with snappyHexMesh on these edges. All edges are marked,
whose adjacent surfaces normal are at an angle less than the angle specified in includedAngle
in the surfaceFeaturesDict. The extracted edges are written to “*.extendedFeatureEdgeMesh”
files in constant/extendedFeatureEdgeMesh folder to be treated later in the meshing process.

 // * * * * * * * ** //

Surfaces (“flange.stl”);

includedAngle 150;

 // * * * * * * * ** //

OpenFOAM® v1906: the utility surfaceFeatureExtract should be used for extracting sharp edges,
the setup file is surfaceFeatureExtractDict!

 // * * * * * * * ** //
flange.stl
{
 extractionMethod extractFromSurface;

 extractFromSurfaceCoeffs
 {
 includedAngle 150;
 }
 writeObj yes;
}

 // * * * * * * * ** //

OpenFOAM® v1906: surfaceFeatureExtract utility should be used!

- snappyHexMeshDict:

This file includes the settings for running the snappyHexMesh. As mentioned in the Background
section meshing using this tool has three steps:
1 – Castellating
2 – Snapping
3 – Layering
In the first section of this file, castellatedMesh, snap, addLayers can be set to true or
false depending on the stages required.

 // * * * * * * * ** //
 castellatedMesh true;
 snap true;
 addLayers true;
 // * * * * * * * ** //

The Geometry sub-dictionary lists all surfaces used by snappyHexMeshDict, except the
blockMesh geometry, and defines a name for each of them to be used as a reference.

OpenFOAM® Basic Training

Tutorial Twelve

Then we specify a region of the domain that we want to refine. The refined region is given an
arbitrary name; in this case, it is refineHole, which is a sphere with its center and radius
defined.

// * * * * * * * ** //
geometry
{
 flange
 {
 type triSurfaceMesh;
 file “flange.stl”;
 }
 refineHole

{
 type searchableSphere;
 centre (0 0 -0.012);
 radius 0.003;

 }
};

 // * * * * * * * ** //

OpenFOAM® v1906: The geometry section of the snappyHexMeshDict looks as following:

// * * * * * * * ** //
geometry
{
 flange.stl
 {
 type triSurfaceMesh;
 name flange;
 }
 …
};

 // * * * * * * * ** //

CASTELLATING

In the castellating step based on the settings in the snappyHexMeshDict file the created
background mesh (in this case using blockMesh) cells are cut into sub-cells and the unneeded
part of the mesh will be deleted. The background mesh is known as mesh “level 0”, by setting
the “level” to 1 the background mesh at the position of features or defined refinements will be
cut into half in each direction (creating 8 sub-cells for a 3D mesh). Therefor by each level of
refinement number of cells increases by factor 8!

Refinement level 0, level 1, level 2, level 3

The castellatedMeshControls sub-dictionary is used for user-defined mesh refinement in
the castellating step.

OpenFOAM® Basic Training

Tutorial Twelve

features allows special treatment of the “*.extendedFeatureEdgeMesh” edges to be refined to
a certain level.

refinementSurfaces are for surface based refinement. Every surface is specified with two
levels. The first level is the minimum level that every cell intersecting the surface gets refined
up to. The second level is the maximum level of refinement.

resolveFeatureAngle is an important setting. Edges, whose adjacent surfaces normal are at
an angle higher than the value set, are resolved. The lower the value, the better the resolution at
sharp edges.

refinementRegions: Volume based refinement of the regions defined in the geometry
section. In this tutorial the refinementHole region will be refined. In the levels the first
number (1E15) is the maximum number of the cells which can be reached after refinement in
this region and second number (3) is the level of refinement

locationInMesh: Important coordinate for single region cases, to define which part of the
mesh should be kept, inside or outside the geometry.

 // * * * * * * * ** //

castellatedMeshControls
{
 maxLocalCells 100000;
 maxGlobalCells 2000000;
 minRefinementCells 0;

nCellsBetweenLevels 1;

 features
 (
 {
 file "flange.extendedFeatureEdgeMesh";
 level 0;
 }
);

 refinementSurfaces
 {
 flange
 {
 level (2 2);
 }
 }

 resolveFeatureAngle 30;

 refinementRegions

{
 refineHole
 {
 mode inside;
 levels ((1E15 3));

 }
 locationInMesh (-9.23149e-05 -0.0025 -0.0025);

 allowFreeStandingZoneFaces true;
}

 // * * * * * * * ** //

Note: The locationInMesh point should never be on a face of the mesh, even after refinement.
It should always be inside a cell or the meshing will fail!

OpenFOAM® Basic Training

Tutorial Twelve

In the castellated step, the background mesh will be refined based on the defined refinement levels
at features, surfaces or regions and the unneeded part of the mesh will be removed.

SNAPPING

Important parameters are number of mesh displacement iterations, nSolveIter and the number of
feature edge snapping iterations, nFeatureSnapIter.

 // * * * * * * * ** //

snapControls
{
 nSmoothPatch 3;
 tolerance 1.0;
 nSolveIter 300;
 nRelaxIter 5;
 nFeatureSnapIter 10;
 implicitFeatureSnap false;
 explicitFeatureSnap true;
 multiRegionFeatureSnap true;
}

 // * * * * * * * ** //

LAYERING

The label for the layering is equal to the labeling of the Boundary surface in the boundary file in the
constant/polyMesh folder.

- nSurfaceLayers defines the number of surface layers
- expansionRatio defines the expansion ratio of the surface layers
- finalLayerThickness and minThickness define the min and the final thickness of the

surface layers
- nLayerIter: if not snapped smoothly enough, the max number of layer addition iteration can

be increased.

 // * * * * * * * ** //

addLayersControls
{
 relativeSizes true;
 layers
 {
 “flange_.*”
 {
 nSurfaceLayers 3;
 }
 }

expansionRatio 1.005;

 finalLayerThickness 0.3;
 minThickness 0.25;
 nGrow 0;
 featureAngle 30;
 nRelaxIter 5;
 nSmoothSurfaceNormals 1;
 nSmoothNormals 3;
 nSmoothThickness 10;
 maxFaceThicknessRatio 0.5;
 maxThicknessToMedialRatio 0.3;
 minMedianAxisAngle 90;
 nBufferCellsNoExtrude 0;

nLayerIter 50;
nRelaxedIter 20;

}
meshQualityControls
{

OpenFOAM® Basic Training

Tutorial Twelve

 #include "meshQualityDict"
relaxed
{
 maxNonOrtho 75;
}

nSmoothScale 4;

 errorReduction 0.75;
}
writeFlags
(
 scalarLevels
 layerSets
 layerFields
);
mergeTolerance 1e-6;

 // * * * * * * * ** //

Note: Only the relevant changes, which were used in the sample flange case, are commented in
the snappyHexMeshDict.

2. Running snappyHexMesh
The background mesh is created with the following command:
>blockMesh

According to the settings in the blockMeshDict, the mesh was created with 20 cells in x direction,
16 cells in y direction and with 12 cells in z direction.

Block mesh for flange

>surfaceFeatures

OpenFOAM® v1906: >surfaceFeatureExtract

The command to mesh the flange geometry on one processor is

OpenFOAM® Basic Training

Tutorial Twelve

>snappyHexMesh

Note: The meshing process with snappyHexMesh can also be run in parallel. To run the command
on several processors, refer to Tutorial Eight for more information.

The command snappyHexMesh creates a folder with the mesh files for each mesh step. If, for
example, in the snappyHexMeshDict, only castellatedMesh is set to true and snap and addLayers
are set to false, only one folder is created. If also snap is set to true, 2 folders are created and if also
addLayers is set to true, 3 folders with 3 polyMesh folders are created.

Folders structure after running snappyHexMesh

In order to avoid the creation of these folders and only keep the final mesh, the following command
can be used to overwrite the previous meshing steps. In this case, only one polyMesh folder exits in
the /constant directory.

Folders structure after using -overwrite flag

>snappyHexMesh --overwrite

However, sometimes it is useful to run snappyHexMesh without the overwrite option, as it allows
the user to make changes to a specific time step without having to run all the other steps again, thus
reducing computational time.

3. Examining the meshes
To examine, what each of the steps in the snappyHexMeshDict really does, we need to turn off the
overwrite feature in snappyHexMesh command and generate VTK files to be opened in ParaView.

OpenFOAM® Basic Training

Tutorial Twelve

>foamToVTK

Simply change the time in Paraview to see the effect of snappyHexMesh steps on the mesh, i.e. time
1 corresponds to the mesh after castellating step, time 2 for the mesh after snapping step, time 3 for
the mesh after the layering step.

Flange mesh for step castellating with surface refinement level 2

Flange mesh for step castellating with surface refinement level 3

Flange mesh for step snap with surface refinement level 3

OpenFOAM® Basic Training

Tutorial Twelve

Flange mesh for step addlayers with surface refinement level 3

The slice views taken with ParaView from the center of the flange. The slices are depicted by the
red plain in the following figure:

Flange with sectional plain

You can review the mesh quality with the tool checkMesh.
>checkMesh

4. Running simulation

4.1. Copy tutorial
Now with the new mesh ready, let’s run some simulation on it! Here scalarTransportFoam solver is
chosen for the simulation. To set up the case, copy the following tutorial file into your working
directory:
$FOAM_TUTORIALS/basic/scalarTransportFoam/pitzDaily

The flange mesh files need to be transferred to the running case directory. To achieve this, copy the
polyMesh folder from the latest time step file of the flange folder into the constant directory of the
pitzDaily folder. If the overwrite function is activated when running snappyHexMesh, copy the
polyMesh folder from constant directory of the flange folder.

OpenFOAM® Basic Training

Tutorial Twelve

4.2. Case set-up
The following changes need to be made to set up the case:
- Update the T file in the 0 directory, so that the flange has an initial temperature of 293K but is

heated up from the inlet at 350K

dimensions [0 0 0 1 0 0 0];

internalField uniform 293;

boundaryField
{
 flange_patch1
 {
 type fixedValue;
 value uniform 350;
 }
 flange_patch2
 {
 type fixedValue;
 value uniform 293;
 }
 flange_patch3
 {
 type fixedValue;
 value uniform 293;
 }
 flange_patch4
 {
 type fixedValue;
 value uniform 350;
 }
}

- Update the U file in the 0 directory so that the velocity in the entire flange domain and at the
boundaries is zero

- Update the controlDict file in the system directory by changing the endTime to 0.0005,

deltaT to 0.000001 and writeInterval to 100.

4.3. Running solver
Run the solver with the command
>scalarTransportFoam

4.4. Results
Convert the results to VTK files with
>foamToVTK

OpenFOAM® Basic Training

Tutorial Twelve

 0.00001s 0.00002s 0.00003s

 0.00004s 0.00005s

Heating of the flange from 0.01 to 0.05s

OpenFOAM® Basic Training

Tutorial Twelve

	ISBN 978-3-903337-00-8
	For more tutorials visit: www.cfd.at
	Background
	• Cells center points are placed at the intersections of co-ordinates lines
	• Cells have a fixed number of neighboring cells
	• Cells center points can be mapped into a matrix based on their location in the grid
	• Structure and position in the matrix is given by indices (I, J in two dimensions and I, J, K in three dimensions)
	GAMBIT® is a 3D unstructured tool, to specify the meshing scheme in it, two parameters must be specified:
	 Elements
	 Type
	The Elements parameter defines the shape(s) of the elements that are used to mesh the object. The Type parameter defines the pattern of mesh elements on the object. It has a single graphical user interface which brings geometry creation and meshing to...

	snappyHexMesh – flange
	Simulation
	Objectives
	Data processing

	1. Pre-processing
	Copy the following tutorial to your working directory.
	$FOAM_TUTORIALS/mesh/snappyHexMesh/flange
	$FOAM_TUTORIALS/resources/geometry/flange.stl.gz

	OpenFOAM® v1906: the utility surfaceFeatureExtract should be used for extracting sharp edges, the setup file is surfaceFeatureExtractDict!
	OpenFOAM® v1906: surfaceFeatureExtract utility should be used!
	OpenFOAM® v1906: The geometry section of the snappyHexMeshDict looks as following:
	2. Running snappyHexMesh
	>blockMesh
	>surfaceFeatures
	>snappyHexMesh
	Note: The meshing process with snappyHexMesh can also be run in parallel. To run the command on several processors, refer to Tutorial Eight for more information.
	>snappyHexMesh –overwrite

	OpenFOAM® v1906: >surfaceFeatureExtract
	3. Examining the meshes
	>foamToVTK
	>checkMesh

	4. Running simulation
	$FOAM_TUTORIALS/basic/scalarTransportFoam/pitzDaily
	>scalarTransportFoam
	>foamToVTK

